Contactless measurement with OMRON D6T Thermal Sensors
Able to detect the slightest temperature changes
Contactless Measurement

OMRON MEMS Thermal Sensors are able to detect the slightest temperature changes.

MEMS Thermal (IR sensor) measures the surface temperature of objects without touching them when the thermopile element absorbs the amount of radiant energy from the object.
Contactless Measurement
OMRON MEMS Thermal Sensors are able to detect the slightest temperature changes.
MEMS Thermal (IR sensor) measures the surface temperature of objects without touching them when the thermopile element absorbs the amount of radiant energy from the object.

D6T MEMS Thermal Sensors

- Variation of the number of elements (1 to 1024) x temperature range (-40 to 200°C)

Number of elements and temperature lineup

Variation of the number of elements (1 to 1024) x temperature range (-40 to 200°C)

Low noise
Market performance of over 6 million units*1 with a stable temperature output*2

*1: According to OMRON’s research as of March 2022.
*2: Refer to the Noise Equivalent Temperature Difference (NETD) on page 12.

Easy connection
Direct temperature value output allows easy software design

Market performance of over 6 million units

Market performance of over 6 million units*1 with a stable temperature output*2

*1: According to OMRON’s research as of March 2022.
*2: Refer to the Noise Equivalent Temperature Difference (NETD) on page 12.

Easy connection
Direct temperature value output allows easy software design

Number of elements and temperature lineup

Variation of the number of elements (1 to 1024) x temperature range (-40 to 200°C)
High Precision

Market performance of over 6 million units*1 with a stable temperature output*2

*1: According to OMRON’s research as of March 2022.
*2: Refer to the Noise Equivalent Temperature Difference (NETD) on page 12.

Past problem
Output was unstable in applications requiring high precision

Solution!
Stable temperature output

OMRON D6T-1A-01

Standard Equivalent Product

Note 1. According to OMRON’s evaluation method (30-second continuous measurement with a blackbody furnace at 25°C)
Note 2. However, product specifications are not guaranteed.
Achieves a low NETD*1 through the combination of ASIC and MEMS

OMRON's unique digital filter and process optimization help reduce the noise of ASIC, thus achieving a low NETD*1.

*1: Refer to the Noise Equivalent Temperature Difference (NETD) on page 12.

Product Structure

MEMS technology allows combining thermopile elements and ASICs into one package, resulting in ultra-compact footprint and high precision.

MEMS thermopile detection principle

The sensor utilizes the seebeck effect in which thermoelectric force is generated due to the temperature difference that occurs across the junction points of two different types of metal.
Easy connection

Direct temperature value output allows easy software design

OMRON D6T

Temperature value output

CAN packaged thermal sensor from a competitor

Bit value output

Sensor

MEMS

Voltage

A/D conversion

Bit value

Temperature conversion

Temperature value

Customer

MCU

Provision of Development Support Tool

MEMS thermal sensors can be connected to OMRON sensor evaluation boards.
The below 3 types of platform are applicable. Evaluation can be performed easily by connecting thermal sensor, evaluation board, and harness to the platform.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Harness for Connection</th>
<th>Evaluation Board</th>
<th>Platform</th>
<th>Sample Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6T</td>
<td>2JClIE-HARNESS-01</td>
<td>2JClIE-EV01-RP1</td>
<td>Raspberry Pi *1</td>
<td>https://github.com/omron-devhub/d6t-2jcieev01-raspberrypi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2JClIE-EV01-AR1</td>
<td>Arduino *2</td>
<td>https://github.com/omron-devhub/d6t-2jcieev01-arduino</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2JClIE-EV01-FT1</td>
<td>ESP32 Feather *3</td>
<td>https://github.com/omron-devhub/d6t-2jcieev01-arduino</td>
</tr>
</tbody>
</table>

*1. Raspberry Pi is a registered trademark of the Raspberry Pi Foundation. *2. Arduino is a registered trademark of Arduino LLC and Arduino SRL. *3. Feather is a registered trademark of Adafruit Industries LLC.
Number of elements and temperature lineup

Variation of the number of elements (1 to 1024) and the temperature range (-40 to 200°C)
Example Applications

The sensors can be used in a wide range of applications, depending on the temperature measurement range.

- **Refrigerator Interior & Room Temperature Detection**
 - Able to detect temperature from a long distance
 - Recommended Models: 1x1, 1x8, 4x4, 32x32

- **Human Presence Detection**
 - Able to detect stationary human presence
 - Recommended Models: 1x1, 1x8, 4x4, 32x32

- **Screening of Humans with Fever**
 - Contributes to automated non-contact temperature detection
 - Recommended Models: 1x1, 1x8, 4x4, 32x32
Comparison with Pyroelectric Sensor

Both the pyroelectric sensor and non-contact MEMS thermal sensor can detect even the slightest amount of radiant energy from objects such as infrared radiation and convert them into temperature readings. However, unlike pyroelectric sensor that relies on motion detection, non-contact MEMS thermal sensor is able to detect the presence of stationary humans (or objects).

Pyroelectric sensor
Converts temperature readings only when detecting “temperature changes in the radiant energy” in its field of view.

MEMS thermal sensor (thermopile)
Converts temperature readings by “continuously detecting the temperature of radiant energy” in its field of view.

Recommended Models

- 1×1
- 1×8
- 4×4
- 32×32
Viewing Angle and Measurement Area

Choose your preferred sensor viewing angle to meet your application needs.

<table>
<thead>
<tr>
<th>Model</th>
<th>D6T-1A-01</th>
<th>D6T-1A-02</th>
<th>D6T-8L-09</th>
<th>D6T-8L-09H</th>
<th>D6T-44L-06</th>
<th>D6T-44L-06H</th>
<th>D6T-32L-01A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of elements</td>
<td>1(1x1)</td>
<td>8(1x8)</td>
<td>16(4x4)</td>
<td>1024(32x32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viewing angle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-direction</td>
<td>X = 58.0°</td>
<td>X = 26.5°</td>
<td>X = 54.5°</td>
<td>X = 44.2°</td>
<td>X = 90.0°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y-direction</td>
<td>Y = 58.0°</td>
<td>Y = 26.5°</td>
<td>Y = 5.5°</td>
<td>Y = 45.7°</td>
<td>Y = 90.0°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of measurement area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance 10 cm</td>
<td>X = 11 cm</td>
<td>X = 4.7 cm</td>
<td>X = 10 cm</td>
<td>X = 8.1 cm</td>
<td>X = 20 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y = 11 cm</td>
<td>Y = 4.7 cm</td>
<td>Y = 1.0 cm</td>
<td>Y = 8.4 cm</td>
<td>Y = 20 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance 50 cm</td>
<td>X = 55 cm</td>
<td>X = 24 cm</td>
<td>X = 52 cm</td>
<td>X = 41 cm</td>
<td>X = 100 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y = 55 cm</td>
<td>Y = 24 cm</td>
<td>Y = 4.8 cm</td>
<td>Y = 42 cm</td>
<td>Y = 100 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance 1 m</td>
<td>X = 111 cm</td>
<td>X = 47 cm</td>
<td>X = 103 cm</td>
<td>X = 81 cm</td>
<td>X = 200 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y = 111 cm</td>
<td>Y = 47 cm</td>
<td>Y = 10 cm</td>
<td>Y = 84 cm</td>
<td>Y = 200 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance 2 m</td>
<td>X = 222 cm</td>
<td>X = 94 cm</td>
<td>X = 206 cm</td>
<td>X = 162 cm</td>
<td>X = 400 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y = 222 cm</td>
<td>Y = 94 cm</td>
<td>Y = 20 cm</td>
<td>Y = 169 cm</td>
<td>Y = 400 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance 3 m</td>
<td>X = 333 cm</td>
<td>X = 141 cm</td>
<td>X = 309 cm</td>
<td>X = 244 cm</td>
<td>X = 600 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y = 333 cm</td>
<td>Y = 141 cm</td>
<td>Y = 30 cm</td>
<td>Y = 253 cm</td>
<td>Y = 600 cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The sizes of measurement areas indicated above are for reference only.
* The size of the measurement area changes according to sensor mounting angle.
MEMS Non-Contact Thermal Sensor for Contactless Measurement

- Achieves a low NETD*1 through the combination of ASIC and MEMS
- Direct temperature value output allows easy software design
- Variation of the number of elements (1 to 1024) and the temperature range (-40 to 200°C)

*1. Refer to the Noise Equivalent Temperature Difference (NETD) on page 12.

Ordering Information

<table>
<thead>
<tr>
<th>Thermal Sensors</th>
<th>Model Number Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element type</td>
<td>(1) (2) (3)</td>
</tr>
<tr>
<td>1x1</td>
<td>D6T-1A-01</td>
</tr>
<tr>
<td></td>
<td>D6T-1A-02</td>
</tr>
<tr>
<td>1x8</td>
<td>D6T-8L-09</td>
</tr>
<tr>
<td></td>
<td>D6T-8L-09H</td>
</tr>
<tr>
<td>4x4</td>
<td>D6T-44L-06</td>
</tr>
<tr>
<td></td>
<td>D6T-44L-06H</td>
</tr>
<tr>
<td>32x32</td>
<td>D6T-32L-01A</td>
</tr>
</tbody>
</table>

Accessories (Sold separately)

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Harness</td>
<td>D6T-HARNESS-02</td>
</tr>
</tbody>
</table>

Others

MEMS thermal sensors can be connected to OMRON sensor evaluation boards. The below 3 types of platform are applicable. Evaluation can be performed easily by connecting thermal sensor, evaluation board, and harness to the platform.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Evaluation Board</th>
<th>Harness for connection (Evaluation Board - D6T)</th>
<th>Sample Source Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Raspberry Pi*1</td>
<td>2JCIE-EV01-RP1</td>
<td>2JCIE-HARNESS-01</td>
<td>https://github.com/omron-devhub/d6t-2jcieev01-raspberrypi</td>
</tr>
<tr>
<td>For Arduino*2</td>
<td>2JCIE-EV01-AR1</td>
<td>2JCIE-HARNESS-01</td>
<td>https://github.com/omron-devhub/d6t-2jcieev01-arduino</td>
</tr>
<tr>
<td>For ESP32 Feather*3</td>
<td>2JCIE-EV01-FT1</td>
<td>2JCIE-HARNESS-01</td>
<td>https://github.com/omron-devhub/d6t-2jcieev01-arduino</td>
</tr>
</tbody>
</table>

For details of evaluation boards and sample source codes, refer to the following website.
(https://components.omron.com/sensor/evaluation-board/2jcie)

*1. Raspberry Pi is a registered trademark of the Raspberry Pi Foundation.
*2. Arduino is a registered trademark of Arduino LLC and Arduino SRL.
*3. Feather is a registered trademark of Adafruit Industries LLC.
D6T MEMS Thermal Sensors

Ratings, Specifications, and Functions

Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>D6T-1A-01</th>
<th>D6T-1A-02</th>
<th>D6T-8L-09</th>
<th>D6T-8L-09H</th>
<th>D6T-44L-06</th>
<th>D6T-44L-06H</th>
<th>D6T-32L-01A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td></td>
<td>4.5 to 5.5 VDC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-20 to 80°C</td>
<td>-40 to 80°C</td>
<td>-20 to 80°C</td>
<td>-10 to 60°C</td>
<td>-20 to 80°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to 60°C</td>
<td>-40 to 80°C</td>
<td>0 to 60°C</td>
<td>0 to 60°C</td>
<td>-10 to 70°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage humidity range</td>
<td>95% max.</td>
<td>95% max.</td>
<td>95% max.</td>
<td>85% max.</td>
<td>95% max.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating humidity range</td>
<td>20% to 95%</td>
<td>20% to 95%</td>
<td>20% to 95%</td>
<td>20% to 85%</td>
<td>20% to 95%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>D6T-1A-01</th>
<th>D6T-1A-02</th>
<th>D6T-8L-09</th>
<th>D6T-8L-09H</th>
<th>D6T-44L-06</th>
<th>D6T-44L-06H</th>
<th>D6T-32L-01A</th>
</tr>
</thead>
<tbody>
<tr>
<td>View angle *1</td>
<td></td>
<td>58.0°</td>
<td>26.5°</td>
<td>54.5°</td>
<td>44.2°</td>
<td>90°</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>Accuracy 1</td>
<td></td>
<td>±1.5°C max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object temperature output accuracy *2</td>
<td></td>
<td>±3.0°C max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td></td>
<td>3.5 mA typical</td>
<td>5 mA typical</td>
<td>19 mA typical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>D6T-1A-01</th>
<th>D6T-1A-02</th>
<th>D6T-8L-09</th>
<th>D6T-8L-09H</th>
<th>D6T-44L-06</th>
<th>D6T-44L-06H</th>
<th>D6T-32L-01A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature resolution (NETD) *3</td>
<td></td>
<td>0.02°C (Data update cycle 100 msec)</td>
<td>0.06°C (Data update cycle 100 msec)</td>
<td>0.03°C (Data update cycle 250 msec)</td>
<td>0.03°C (Data update cycle 250 msec)</td>
<td>0.06°C (Data update cycle 300 msec)</td>
<td>0.06°C (Data update cycle 300 msec)</td>
<td>0.33°C *4 (Data update cycle 200 msec)</td>
</tr>
</tbody>
</table>

*1. Refer to Field of View Characteristics.
*2. Refer to Object Temperature Detection Range.
*3. Reference data.
*4. Taken to be the average value of the central 4 pixels.
Object Temperature Detection Range

D6T-44L-06, D6T-8L-09, D6T-1A-01

D6T-44L-06H, D6T-8L-09H

D6T-1A-01

D6T-1A-02

D6T-32L-01A

Connections

Thermal Sensor Configuration Diagram

<D6T-8L-09>

<D6T-8L-09H>

Note: The D6T-44L-06 has pixels 0 to 15.
The D6T-44L-06H has pixels 0 to 15.
The D6T-1A-01 has pixel 0.
The D6T-1A-02 has pixel 0.
The D6T-32L-01A has pixel 0 to 1023.

Terminal Arrangement

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Name</th>
<th>Function</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>Positive power supply voltage input</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SDA</td>
<td>Serial data I/O line</td>
<td>Connect the open-drain SDA terminal to a pull-up resistor.</td>
</tr>
<tr>
<td>4</td>
<td>SCL</td>
<td>Serial clock input</td>
<td>Connect the open-drain SCL terminal to a pull-up resistor.</td>
</tr>
</tbody>
</table>
Field of View Characteristics

<table>
<thead>
<tr>
<th>D6T-44L-06</th>
<th>Field of View in X Direction</th>
<th>Field of View in Y Direction</th>
<th>Detection Area for Each Pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>X View angle</td>
<td>44.2°</td>
<td>Y View angle</td>
<td></td>
</tr>
<tr>
<td>Y View angle</td>
<td>45.2°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Definition of view angle: Using the maximum sensor output as a reference, the angular range where the Sensor output is 50% or higher when the angle of the Sensor is changed is defined as the View angle.

<table>
<thead>
<tr>
<th>D6T-8L-09</th>
<th>Field of View in X Direction</th>
<th>Field of View in Y Direction</th>
<th>Detection Area for Each Pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>X View angle</td>
<td>54.5°</td>
<td>Y View angle</td>
<td></td>
</tr>
<tr>
<td>Y View angle</td>
<td>5.5°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Definition of view angle: Using the maximum Sensor output as a reference, the angular range where the Sensor output is 50% or higher when the angle of the Sensor is changed is defined as the view angle.
Note: Definition of view angle: Using the maximum Sensor output as a reference, the angular range where the Sensor output is 50% or higher when the angle of the Sensor is changed is defined as the view angle.
D6T MEMS Thermal Sensors

Dimensions (Unit: mm)

D6T-44L-06
D6T-44L-06H

Note: Unless otherwise specified, a tolerance of ±0.3 mm applies to all dimensions.

Supporting and Mounting Area (Shaded Portion)
Top View

Bottom View

Note: Due to insulation distance limitations, do not allow metal parts to come into contact with the Sensor.

Please visit our CAD Data website, which is noted on the last page.

D6T-8L-09
D6T-8L-09H

Supporting and Mounting Area (Shaded Portion)
Top View

Bottom View

Note: Due to insulation distance limitations, do not allow metal parts to come into contact with the Sensor.

Note: Unless otherwise specified, a tolerance of ±0.3 mm applies to all dimensions.
D6T MEMS Thermal Sensors

D6T-1A-01
D6T-1A-02

Supporting and Mounting Area (Shaded Portion)

Top View

Bottom View

Note: Due to insulation distance limitations, do not allow metal parts to come into contact with the Sensor.

D6T-32L-01A

Supporting and Mounting Area (Shaded Portion)

Top View

Bottom View

Note: Due to insulation distance limitations, do not allow metal parts to come into contact with the Sensor.

D6T-HARNESS-02 (Optional - sold separately)

Cable Color

<table>
<thead>
<tr>
<th>Cable Color</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND → BLACK</td>
<td>Wire</td>
</tr>
<tr>
<td>VCC → RED</td>
<td>Wire</td>
</tr>
<tr>
<td>SDA → BLUE</td>
<td>Wire</td>
</tr>
<tr>
<td>SCL → YELLOW</td>
<td>Wire</td>
</tr>
</tbody>
</table>

* Length of Cable removed sheath.

Note: Unless otherwise specified, a tolerance of ±0.3 mm applies to all dimensions.
Safety Precautions

Precautions for Correct Use

● Installation
 • The sensor may not achieve the characteristics given in this datasheet due to the ambient environment or installation location. Before using the Sensor, please acquire an adequate understanding and make a prior assessment of Sensor characteristics in your actual system.

● Operating Environment
 • Do not use the Sensor in locations where dust, dirt, oil, and other foreign matter will adhere to the lens. This may prevent correct temperature measurements.
 • Do not use the Sensor in any of the following locations.
 • Locations where the Sensor may come into contact with water or oil
 • Outdoors
 • Locations subject to direct sunlight.
 • Locations subject to corrosive gases (in particular, chloride, sulfide, or ammonia gases).
 • Locations subject to extreme temperature changes
 • Locations subject to icing or condensation.
 • Locations subject to excessive vibration or shock.

● Noise Countermeasures
 • The Sensor does not contain any protective circuits. Never subject it to an electrical load that exceeds the absolute maximum ratings for even an instance. The circuits may be damaged. Install protective circuits as required so that the absolute maximum ratings are not exceeded.
 • Keep as much space as possible between the Sensor and devices that generates high frequencies (such as high-frequency welders and high-frequency sewing machines) or surges.
 • Attach a surge protector or noise filter on nearby noise-generating devices (in particular, motors, transformers, solenoids, magnetic coils, or devices that have an inductance component).
 • In order to prevent inductive noise, separate the connector of the Sensor from power lines carrying high voltages or large currents. Using a shielded line is also effective.
 • If a switching regulator is used, check that malfunctions will not occur due to switching noise from the power supply.

● Handling
 • This Sensor is a precision device. Do not drop it or subject it to excessive shock or force. Doing so may damage the Sensor or change its characteristics. Never subject the connector to unnecessary force. Do not use a Sensor that has been dropped.
 • Take countermeasures against static electricity before you handle the Sensor.
 • Turn OFF the power supply to the system before you install the Sensor. Working with the Sensor while the power supply is turned ON may cause malfunctions.
 • Secure the Sensor firmly so that the optical axis does not move.
 • Install the Sensor on a flat surface. If the installation surface is not even, the Sensor may be deformed, preventing correct measurements.
 • Do not install the Sensor with screws. Screws may cause the resist to peel from the board. Secure the Sensor in a way that will not cause the resist to peel.
 • Always check operation after you install the Sensor.
 • Use the specified connector (GHR-04 from JST) and connect it securely so that it will not come off. If you solder directly to the connector terminals, the Sensor may be damaged.
 • Make sure to wire the polarity of the terminals correctly. Incorrect polarity may damage the Sensor.
 • Never attempt to disassemble the Sensor.
 • Do not use the cable harness to the other product.
Information of Related Products

<table>
<thead>
<tr>
<th>D6T</th>
<th>2JCIE-EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMS Thermal Sensor</td>
<td>Sensor Evaluation Board</td>
</tr>
<tr>
<td>User's Manual</td>
<td></td>
</tr>
</tbody>
</table>

Catalog No. A284-E1
Catalog No. A297-E1

<table>
<thead>
<tr>
<th>D6F</th>
<th>Sensor Selection Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMS Flow Sensor</td>
<td></td>
</tr>
</tbody>
</table>

Catalog No. X211-E1
Catalog No. Y232-E1

OMRON Corporation
Device & Module Solutions Company

Regional Contact

Americas
https://components.omron.com/us

Asia-Pacific
https://components.omron.com/ap

Korea
https://components.omron.com/kr

Europe
https://components.omron.com/eu

China
https://components.omron.com.cn

Japan
https://components.omron.com/jp

© OMRON Corporation 2018-2023 All Rights Reserved.
In the interest of product improvement, specifications are subject to change without notice.

Please check each region's Terms & Conditions by region website.