LED Driver

W2RG012RN

OMRON

■ Features

Optimal IC for LED performance control

- The built-in exponential PWM gradation control function with up to 256 levels enables visually pleasing fade-ins and fade-outs.
- Capable of dynamically driving matrix-connected LEDs and individually controlling up to 128 channels.
- Serial bus connection allows up to 15 of these ICs to be connected on the same communication line.
- 24 constant current outputs are housed in a compact package with 7 x 7 mm dimensions.
- Built-in thermal shutdown

■ Model Number Legend

W2R G012RN

(1) IC

(1) (2)

(2) Series name

■ Absolute Maximum Ratings

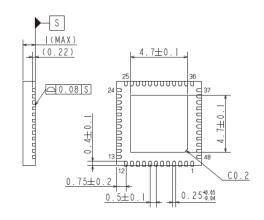
Item	Symbol	Rating	Unit	Target terminals
Power supply voltage	VDD	-0.3 to 7.0	V	VDD
Input voltage	VIN	-0.3 to VDD + 0.3 ≤ 7.0	V	SDA, SCL, RST, CE, ADR1, ADR0, DIV, COM
Signal output voltage	VSOUT	-0.3 to VDD + 0.3 ≤ 7.0	V	SDO, OUTDC
Drive output voltage	VDOUT	-0.3 to 20	V	OUTOR to 7R, OUTOG to 7G, OUTOB to 7B, OUTS0 to S3
Drive output current/pin	IDOUT	80 (*1)	mA	OUTOR to 7R, OUTOG to 7G, OUTOB to 7B
Switching output current/pin	IDOUTS	20	mA	OUTS0 to S3
Allowable loss	Pd1	3.43 (*2)	W	-
	Pd2	1.80 (*2)	W	-
	Pd3	1.16 (*2)	W	-
Operating ambient temperature	Topr	-20 to 85	°C	-
Storage ambient temperature	Tstg	-40 to 150	°C	-

^{*1.} Consider the power consumption and allowable loss before use.

Pd1: Rtd = 27.4 mW/°C for a double-sided board with a copper foil area of 4900 mm² on the backside.

Pd2: Rtd = 14.4 mW/°C for a double-sided board with a copper foil area of 225 mm² on the backside.

Pd3: Rtd = 9.28 mW/°C for a single-sided board with a copper foil area of 36 mm².


■ Recommended Operating Conditions

Item	Symbol	Rating	Unit	Target terminals
Power supply voltage	VDD	3.0 to 5.5	V	VDD
Input voltage	VIN	0 to VDD	V	SDA, SCL, RST, CE, ADR1, ADR0, DIV, COM
Signal output current	ISOUT	-10 to 10	mA	SDO, OUTDC
Communication clock frequency	fSCL	Max.5 (*1)	MHz	SCL

^{*1.} Consider the timing characteristics before use.

External Dimensions

[Unit: mm]

^{*2.} Values when a standard board (70 mm x 70 mm x 1.6 mmt, FR-4) is mounted. When used at a temperature of Ta=25°C or higher, reduce by the temperature derating factor Rtd [mW/°C].

■ Electrical Characteristics

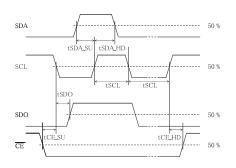
(1) DC characteristics

 $(Ta = 25^{\circ}C, VDD = 5V)$

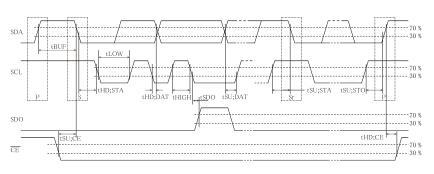
Item	Symbol	Conditions	Sta	andard valu	ies	Unit	Target terminals	
item	Symbol Conditions		Min.	Typ.	Max.	Offic	raiget terriiriais	
High level input voltage	VIH	-	VDD × 0.7	ı	-	V	SDA, SCL, RST, CE	
Low level input voltage	VIL	-	-	ı	VDD × 0.3	V	SDA, SCL, RST, CE	
	VAD1	"10" output	VDD × 0.9	-	VDD + 0.3	V		
A/D input voltage	VAD2	"11" output	VDD × 0.6	-	VDD × 0.7	V	ADR1, ADR0,	
AD input voitage	VAD3	"01" output	VDD × 0.3	1	VDD × 0.4	VDD × 0.4 V DIV, CO		
VAD4		"00" output	-0.3	1	VDD × 0.1	V	1	
High level signal output voltage	VSOH	ISOUT = -5 mA	VDD - 0.5	ı	-	V	CDC OUTDC	
Low level signal output voltage	VSOL	ISOUT = 5 mA	-	•	0.5	V	SDO, OUTDC	
On-resistance 1	RON1	-	-	6.3	10	Ω		
Pin-to-pin current accuracy	Pin-to-pin current accuracy Δ IP		-3	1	+3	%	OUTOR to 7R,	
Inter-device current accuracy Δ ID		IDOUT = 20 mA	-6	1	+6	%	OUT0G to 7G, OUT0B to 7B,	
Drive output leakage current	IDL	-	-	-	1	μΑ	001001070,	
On-resistance 2	RON2	-			20	Ω	OUTS0 to S3	
Current consumption during operation	IDD	Total output: IDOUT = 20 mA	-	5.0	7.0	mA	VDD	

(2) Timing characteristics

(2)-1 Addressed serial communication


 $(Ta = -20 \text{ to } 85^{\circ}\text{C}, VDD = 3.0 \text{ to } 5.5\text{V})$

Item	Symbol Conditions		Standard values			Unit	Target terminals
item	Syllibol	Conditions	Min.	Тур.	Max.	Offic	Target terminals
Communication clock pulse width	tSCL	-	100	-	-	ns	SCL
Data setup time	tSDA_SU	-	90	-	-	ns	CCI CDA
Data hold time	tSDA_HD	-	90	-	-	ns	SCL, SDA
CE setup time	tCE_SU	-	50	-	-	ns	SCL, SDA, CE
CE hold time	tCE_HD	-	50	-	-	ns	SUL, SDA, UE
Data output time	tSDO	Load capacitance 100 pF	-	-	80	ns	SCL, SDO


(2)-2 I2C-compliant serial communication

 $(Ta = -20 \text{ to } 85^{\circ}\text{C}, VDD = 3.0 \text{ to } 5.5\text{V})$

Chambers values						,	
Item	Symbol	Conditions	Standard values			Unit	Target terminals
item	Cymbol	Odriditiono	Min.	Тур.	Max.	O.I.C	rarget terrimale
Clock "L" period	tLOW	-	50	-	-	ns	SCL
Clock "H" period	tHIGH	-	50	-	-	ns	SCL
Bus release time	tBUF	-	80	ı	-	ns	SDA
Start setup time	tSU;STA	-	50	-	-	ns	
Start hold time	tHD;STA	-	50	-	-	ns	
Stop setup time	tSU;STO	-	50	-	-	ns	SCL, SDA
Data setup time	tSU;DAT	-	30	-	-	ns	
Data hold time	tHD;DAT	-	0	-	-	ns	
CE setup time	tSU;CE	-	50	-	-	ns	SCL, SDA, CE
CE hold time	tHD;CE	-	50	-	-	ns	JOL, JDA, GE
Data output time	tSDO	Load capacitance 100 pF	-	-	80	ns	SCL, SDO

Addressed serial communication

I2C-compliant serial communication

■ Function Overview

24 channels of LEDs are driven by constant current or constant voltage.

Furthermore, dynamic lighting (pulsed lighting) of LEDs connected in a matrix can be performed. During dynamic lighting, the LEDs of 48 channels (2-segment), 96 channels (4-segment), and 128 channels (8-segment) can be individually gradation-controlled.

(1) Command reception

The LED lighting command is received via serial communication. In terms of communication methods, three types of addressed serial communication and I2C-compliant serial communication are supported. Up to 128 LED lighting data can be sent continuously. The start signal and device address only need to be specified once, thus reducing the overall communication volume.

(2) Gradation control

256 gradation levels can be illuminated. Each gradation level is assigned to a duty ratio according to an exponential function, allowing expression that corresponds to the characteristics of human vision.

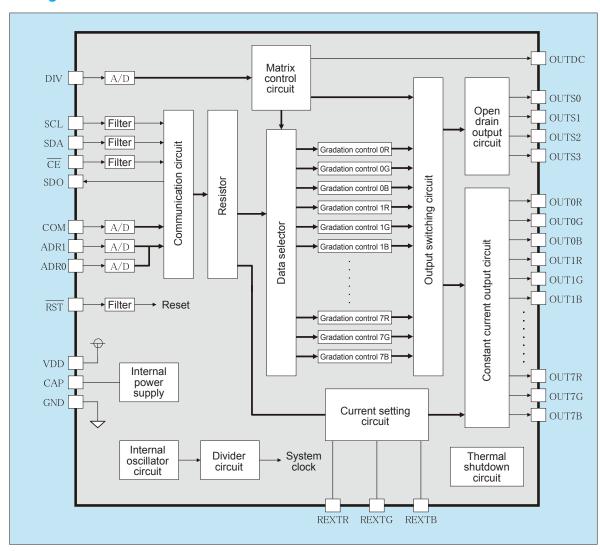
(3) Matrix control

It supports matrix connections of 24 x 1, 24 x 2, 24 x 4, and 16 x 8.

By controlling the switching timing of dynamic lighting, accidental lighting during switching can be prevented.

(4) Power-saving control

Drives the power consumption during LED lighting at 75%/50%/25% of the normal operating power. Batch switching is possible using communication commands, making it easy to switch between normal and power-saving modes.


The control method can be selected between current control and duty ratio control.

Current control switches the output current to 75%, 50%, or 25% based on the current set at the current setting terminals REXTR/REXTG/REXTB. Duty ratio control switches the output duty ratio to 75%, 50%, or 25% based on the gradation-specified duty ratio.

(5) Number of control channels

Up to 15 devices can be connected by specifying the address. This allows for the control of up to 1920 channels of LEDs. In addition, more devices can be connected by switching CE terminals.

■ Block Diagram

■ Terminal List

No.	Terminal name	Terminal description	I/O	Function
1	SDA	Serial data input	I	CMOS, Filter
2	SCL	Serial clock input	I	CMOS, Filter
3	CE	Chip enable input (*1)	I	CMOS, Filter
4	VDD	Power supply	Р	
5	CAP	Capacitor (*2)		
6	GND	Ground	Р	
7	ADR1	Device address 1	I	Resistance voltage divider input
8	ADR0	Device address 0	I	Resistance voltage divider input
9	DIV	Division mode	I	Resistance voltage divider input
10	COM	Communication mode	I	Resistance voltage divider input
11	REXTR	Current setting resistor R		
12	REXTG	Current setting resistor G		
13	REXTB	Current setting resistor B		
14	OUT0R	Output 0R	0	Constant current
15	OUT0G	Output 0G	0	Constant current
16	OUT0B	Output 0B	0	Constant current
17	GND	Ground	Р	
18	OUT1R	Output 1R	0	Constant current
19	OUT1G	Output 1G	0	Constant current
20	OUT1B	Output 1B	0	Constant current
21	OUT2R	Output 2R	0	Constant current
22	OUT2G	Output 2G	0	Constant current
23	GND	Ground	Р	
24	OUT2B	Output 2B	0	Constant current

No.	Terminal name	Terminal description	I/O	Function
25	OUT3R	Output 3R	0	Constant current
26	OUT3G	Output 3G	0	Constant current
27	OUT3B	Output 3B	0	Constant current
28	OUT4R	Output 4R	0	Constant current
29	OUT4G	Output 4G	0	Constant current
30	OUT4B	Output 4B	0	Constant current
31	GND	Ground	Р	
32	OUT5R	Output 5R	Ο	Constant current
33	OUT5G	Output 5G	0	Constant current
34	OUT5B	Output 5B	0	Constant current
35	OUT6R	Output 6R	0	Constant current
36	OUT6G	Output 6G	0	Constant current
37	GND	Ground	Р	
38	OUT6B	Output 6B/Output switching 4	О	Constant current
39	OUT7R	Output 7R/Output switching 5	О	Constant current
40	OUT7G	Output 7G/Output switching 6	О	Constant current
41	OUT7B	Output 7B/Output switching 7	Ο	Constant current
42	OUTS0	Output switching 0	О	N-ch open drain
43	OUTS1	Output switching 1	0	N-ch open drain
44	OUTS2	Output switching 2	О	N-ch open drain
45	OUTS3	Output switching 3	О	N-ch open drain
46	OUTDC	Synchronization control output	О	CMOS
47	SDO	Serial data output	0	CMOS
48	RST	Reset (*3)	I	CMOS, Filter, Pull-up

^{*1.} If the CE terminal is not used, set it to low (L). (Excluding CE-D8 mode)

■ Terminal Description

(1) ADR terminal

Set the device address by inputting the resistance voltage divider. Table 1 shows the correspondence between device addresses and ADR pin voltages.

(2) DIV terminal

Set the matrix configuration of the LEDs to be connected by inputting the DIV terminal resistance voltage divider.

Table 2 shows the correspondence between matrix configurations and DIV terminal voltages, and Table 3 shows the correspondence between matrix configurations and terminal functions.

(3) COM terminal

Set the communication mode by inputting the the resistance voltage divider. Table 4 shows the correspondence between communication modes and COM pin voltages.

(4) REXT terminal

The current is set by connecting to GND via an external REXT resistor. Table 5 shows the current vs. REXT resistor.

(5) RST terminal

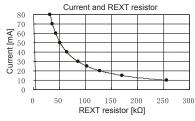
When the input is "L", each buffer is in the initial state, the constant-current output terminal and the open-drain output terminal are in open outputs, and the CMOS output terminal is in "L" output.

Table 1: Device address and ADR terminal voltage

terminai voitage				
Device address	ADR1	ADR0		
0000	GND	GND		
0001	GND	VDD×1/3		
0010	GND	VDD		
0011	GND	$VDD \times 2/3$		
0100	$VDD \times 1/3$	GND		
0101	VDD×1/3	VDD×1/3		
0110	VDD×1/3	VDD		
0111	VDD×1/3	$VDD \times 2/3$		
1000	VDD	GND		
1001	VDD	VDD×1/3		
1010	VDD	VDD		
1011	VDD	$VDD \times 2/3$		
1100	$VDD \times 2/3$	GND		
1101	$VDD \times 2/3$	$VDD \times 1/3$		
1110	$VDD \times 2/3$	VDD		
1111 (reserve)	$VDD \times 2/3$	$VDD \times 2/3$		

Table 2: Matrix configuration and DIV terminal voltage

•			
Matrix configuration	DIV		
24×1	GND		
24×2	VDD×1/3		
24×4	VDD		
16×8	VDD×2/3		


Table 3: Matrix configuration and terminal voltage

Output		Matrix cor	nfiguration			
terminal	24×1	24×2	24×4	16×8		
OUT0R		OU'		•		
OUT0G		OU'	T0G			
OUT0B		OU'	T0B			
OUT1R		OU'	T1R			
OUT1G		OU'	T1G			
OUT1B		OU'				
OUT2R		OU'	T2R			
OUT2G		OU'				
OUT2B		OU'				
OUT3R		OU.				
OUT3G		OUT3G				
OUT3B	OUT3B					
OUT4R	OUT4R					
OUT4G	OUT4G					
OUT4B	OUT4B					
OUT5R	OUT5R					
OUT5G		OUT5G (Not use				
OUT5B		OUT5B		(Not used)		
OUT6R		OUT6R		(Not used)		
OUT6G		OUT6G		(Not used)		
OUT6B		OUT6B OUTS4				
OUT7R	OUT7R OUTS5					
OUT7G	OUT7G OUTS6					
OUT7B	OUT7B OUTS7					
OUTS0	OUTS0					
OUTS1	(Not used)		OUTS1			
OUTS2		(Not used)		TS2		
OUTS3	(Not used)	(Not used)	OU	TS3		

Table 4 shows the correspondence between communication modes and COM pin voltages.

Communication mode	COM
Addressed serial communication (SP-D8)	GND
Addressed serial communication (SP-D7)	VDD×1/3
I2C-compliant serial communication (I2C)	VDD
Addressed serial communication (CE-D8)	VDD×2/3

Table 5: Current and the REXT resistor

Current	REXT resistor
[mA]	[kΩ]
10	256
15	171
20	128
25	102
30	85.3
40	64.0
50	51.2
60	42.7
70	36.6
80	32.0

(Current setting method)

IDOUT [mA] = 2560/RÉXT resistor [k Ω]

(Recommended operating range)

IDOUT: 10 to 80 mA (Instantaneous value) *1. The effective value is IDOUT/division factor.

^{*2.} The CAP terminal connects a power supply smoothing capacitor. Connect a 0.1 µF capacitor between the CAP terminal and GND.

^{*3.} The RST terminal has a built-in 100 kΩ pull-up resistor. If not used, we recommend connecting a 0.1 uF capacitor between the RST terminal and GND for stable operation.

^{*4.} Put unused output terminals in the open state.

■ Communication Specifications

This IC supports four communication methods. Set at the communication mode setting terminal (COM).

(1) Addressed serial communication method (SP-D8 mode)

Word length 0: 8-bit gradation data specification

bit SCL	1 2 3 4 5 6 7 8 9	10 11 12 13 14 15 16 17 18	19	20 21 22 23 24 25 26 27	28 f	29 30 31 32 33 34 35 36		884 885 886 887 888 889 890 891	892 893	894 895 896
SDA Name	START	Device Device R address W	S P	Resistor address Resistor selection data reg_dat[7:0]	S P	Gradation data (0) light_dat0[7:0]	0 P	Gradation data (95) light_dat95[7:0]	1 1 STOP	1 1 1 Byte adjustment
SDO Name	0	0	1 ACK	0	1 ACK	0	ACK	0	1 0 ACK	0

^{*} Word length

Word length 1: 4-bit gradation data specification

	o. a o g	,			1																	
20	21 22 23 24 25 26 27	28	29 30 31	32	33	34	35	36	1	452	453	454	455	456	457	458	459	460	461	462	463 4	64
£		۲	<u> </u>	ſ	Ţ	Γ	ſ	Ţ	À	£	Ъ	Ь	Ь	Ь	Ŀ	Ъ	£	f	£	Ţ	Ĺ	Ì
1		0							0									1	1	1	1	1
*	Resistor address	S	Gradation data (0)		C	lata	atio			d	rad lata	(94)	C	irad lata	(95	5)	ST	ΩĐ		Byte	
F	Resistor selection data reg_dat[7:0]	Р	light_dat([3:0])	li		_dat :0]	1	P	li	ght_ [3	dat! :0]	94	li.	ght_ [3	dat! :0]	95	31	OF	adj	ustmer	١t
	0	1		()				1				()				1	0		0	_
		ACK							Ad \									ACK		:		Ξ

Byte adjustment: When sending data in 8-bit units, specify "1" for the remainder pit after STOP.

(2) Addressed serial communication method (SP-D7 mode)

bit SCL	1 2 3 4 5 6 7 8 f f f f f f f	9 10 11 12 13 14 15 16	17 18	19 20 21 22 23 24 f f f f f	25 •	26 27 28 29 30 31 32 f f f f f f f			793 794 795 796 797 798 799 800
SDA	1 1 1 1 1 1 1 1	0 0 1 0	0		0		0		1 1 1 1 1 1 1 1
Name	START	Device Device address	3	Resistor address	S	Gradation data (0)		Gradation data (95)	STOP
IVallic	STAKI	Device selection data dvc_dat[6:0]	P Re	esistor selection data reg_dat[6:0]	Р	light_dat0[6:0]	P	light_dat95[6:0]	5101
SDO	0	0	1	0	1	0	M/	0	1 0
Name			ACK		ACK		Αď		ACK

(3) Addressed serial communication method (CE-D8 mode)

Word length 0: 8-bit gradation data specification

bit		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	777	778	779	780	781	782	783	784	
CE	ļ	Ш						П		П		П						\Box								Γ		П				П		
SCL		ſ	ſ	ſ	ſ	ſ	ſ	ſ	£	Ŧ	ſ	ſ	ſ	ſ	ſ	ſ	ſ	ı	J	ſ	ſ	£	ſ	ſ	1	N-	ſ	ſ	ſ	ſ	£	ſ	ſ	
SDA	1	0	1	0					0	0)):]								1
Name	START	D	evic ID	е		De ^v add			R W	*		Res	sisto	or a	ddre	ess					atior					/				n da				STOP
Name	SIARI	[Dev		sele c_da			lata		F	Resi			lect it[7:		data	а			ligh	t_da	t0[′	7:0]		(]	light	t_da	t95	7:0]		3101
SDO	0				0				1				0				1				0				1				0				1	0
Name									SYN								SYN								SYN	//							SYN	
* 14/ 11										- 144																								

^{*} Word length

Word length 1: 4-bit gradation data specification

VV	JIU	IE	Hy	uп	1. '	4-L	иų	ji a	ua	liO	II U	ald	<u> </u>	μe	CIII	Ca	liUi	1						
9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	393	394	395	396	397	398	399	400	
																							П	L
f	5	ſ	ſ	f	ſ	ſ	4	£	Ъ	1	ſ	f	Ъ	1	ſ	W	f	ſ	ſ	ſ	£	f	ſ	
1																//:								1
*		Res	sisto	or a	ddr	ess			data (0) da					latic a (1			ata ata					latic (95		STOP
F	Resi		r se g_da			dat	а	li						_dat :0]	1	li.	ght_ [3	dat: :0]	94	li.		dat: :0]	95	3101
			0				1		0						1	I			0				1	0
							SYN								SYN	//							SYN	

(4) I2C-compliant serial communication method (I2C mode)

Word length 0: 8-bit gradation data specification

bit SCL		1 2 3 4 5 6 7 8 f f f f f f f	9	10 11 12 13 14 15 16 17	18 f	19 20 21 22 23 24 25 26 f f f f f f f	V	874 875 876 877 878 879 880 881 f f f f f f	882	
SDA	\Box	0 1 0	1	0	1		1)		1	
Name	START	Device Device R address W	(Open)	* Resistor address	en)	Gradation data (0)	(Operation	Gradation data (95)	pen)	STOP
Ivanic	SIAKI	Device selection data dvc_dat[7:0]	dO)	Resistor selection data reg_dat[7:0]	dO)	light_dat0[7:0]	(Ö	light_dat95[7:0]	o)	3101
SDO	0	0	1	0	1	0	1//	0	1	0
Name	(Open)	(Open)	ACK	(Open)	ACK	(Open)	ΑĊ	(Open)	ACK	(Open)

^{*} Word length

VVC	ord length 1: 4-bit (gra	dation data	a specificat	101	n			
10	11 12 13 14 15 16 17	18	19 20 21 22	23 24 25 26	\mathbb{N}	442 443 444 445	446 447 448 449	450	
ſ		ſ	THH		Ŋ	$\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}$	T	ſ	
1		1			1			1	
*	Resistor address	pen)	Gradation data (0)	Gradation data (1)		Gradation data (94)	Gradation data (95)	pen)	STOP
	Resistor selection data reg_dat[7:0]	0)	light_dat0 [3:0]	light_dat1 [3:0]	Ö,	light_dat94 [3:0]	light_dat95 [3:0]	dO)	3101
	0	1	()	1//		0	1	0
	(Open)	ACK	(Op	oen)	Αď	(Op	en)	ACK	(Open)

^{*} Word length

^{*} Word length

^{*} Word length

The names and communication formats of each communication method are shown below.

Communication mode name	Abbreviation start signal	Start signal	Stop signal	Separator	Data width	Response
Addressed serial communication method (SP-D8 mode)	SP-D8	"1 1111 1111 0"	"1 1111 1111"	0: Continue 1: End	8	ACK (NACK)
Addressed serial communication method (SP-D7 mode)	SP-D7	"1111 1111 0"	"1111 1111"	0: Continue 1: End	7	ACK (NACK)
Addressed serial communication method (CE-D8 mode)	CE-D8	CE falling edge	CE rising edge	(None)	8	SYN
I2C-compliant serial communication (I2C mode)	I2C	I2C standard compliant	I2C standard compliant	I2C standard compliant	8	ACK (NACK)

[Start signal] Regardless of whether in standby or in communication, communication is initialized and the device is

placed in a state waiting for device selection data.

[Stop signal] Terminates communication and enters a start signal waiting state.

With SP-D8/SP-D7, the communication termination procedure (sending "1" to the separator / sending

stop signal) can be omitted by sending the start signal after sending the gradation data.

[Separator] A bit to be inserted between transmitted data.

With SP-D8/SP-D7, sending "1" to the separator terminates communication and enters the state of

waiting for a stop signal or start signal.

With I2C, the separator is assigned to the ACK response.

[Data width] Transmission data bit width.

With SP-D7, the data that can be specified is limited (no word length specification, 128 gradation

specification).

[Response] Response type. At the falling edge of the SCL signal, this IC outputs data to the SDO terminal.

With SP-D8/SP-D7/I2C, the received data is checked and the result is returned (ACK or NACK). With CE-D8, a synchronous signal is output to indicate that communication is in progress (SYN).

The received data is not checked.

The command structure is shown below.

[Device specification]

Received data is captured when the device ID and device address match the IC settings. The device ID is fixed as "010". The same command can be sent to all devices by specifying "1111" as the device address. The correspondence between device addresses and device address terminals is shown in the table below.

		De	vice sele	ection da	ita dvc_c	lat[7:0]		
Communication mode	7	6	5	4	3	2	1	0
mode		Device II)		Device	address		RW
Standard	0	1	0	ADD:	1[1.0]	ADR	η[1. η]	0
SP-D7	U	1	¦ '	ADK.	[[1.0]	ADN	J[1.U]	_

[Resistor specification]

Communication			[Devi	ce s	elec	tion	data	reg	d <u>a</u> 1	:[7:0)]			
mode	7	Ţ	6	T	5	Ţ	4	T	3	Т	2	Ţ	1	T	0
Standard	*						_		4	-l -l -					
SP-D7	_						R	esis	tor a	aare	ess				

* Word length

 Word length Specify the data unit for gradation data.

Word length specification	Word length
"0"	8bit
"1"	4bit

Register address (lighting position specification)
 Specify the address of the gradation register. The
 upper limit of addresses that can be specified and
 the number of gradation data that can be continuously
 transferred vary depending on the division mode
 setting and word length specification (Table 6).

3. Resistor address (special address)

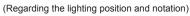
By specifying 0x7F (127), all gradation registers can be specified in one batch.

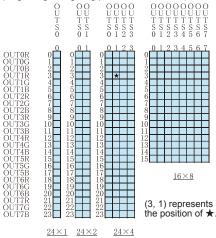
By specifying 0x78 (120), the power-saving data register can be specified.

[Gradation data]

Communication		Devi	ce select	ion data	light_da	t[7:0]							
mode	7	6	5	4	3	2	1	0					
Standard (8 bits)		Gradation data											
Standard (4 bits)		Gradatio	on data N	1	G	radation	data N+	-1					
SP-D7			Gra	adation c	lata			_					

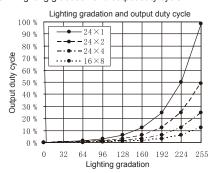
1. Gradation specification Specify the gradation data in one of the following formats: 8-bit (256 gradations), 7-bit (128 gradations), or 4-bit (16 gradations). (Table 7)


Power-saving mode
 When specifying the
 power-saving data
 register in the register
 address, the lower
 4 bits are treated as
 power-saving data.


Power-saving data	Output current or output duty cycle				
"00"	100 %				
"01"	75 %				
"10"	50 %				
"11"	25 %				

Communication	Device selection data light_dat[7:0]							
mode	7	6	5	4	3	2	1	0
Standard	0	0	0	0	Power-saving data (current control)			
SP-D7	_	0	0	0			(duty cycl	y cycle control)

Table 6: Register address and lighting position


Destates	Matrix configuration						
Resistor	24×1 24×2 24×4 16×8						
address	24 ^ 1	24 ^ 2	24 ^ 4	Even columns	Odd columns		
0x00 (0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(1, 0)		
0x01 (1)	(1, 0)	(1, 0)	(1, 0)	(2, 0)	(3, 0)		
0x02 (2)	(2, 0)	(2, 0)	(2, 0)	(4, 0)	(5, 0)		
0x03 (3)	(3, 0)	(3, 0)	(3, 0)	(6, 0)	(7, 0)		
0x04 (4)	(4, 0)	(4, 0)	(4, 0)	(8, 0)	(9, 0)		
0x05 (5)	(5, 0)	(5, 0)	(5, 0)	(10, 0)	(11, 0)		
0x06 (6)	(6, 0)	(6, 0)	(6, 0)	(12, 0)	(13, 0)		
0x07 (7)	(7, 0)	(7, 0)	(7, 0)	(14, 0)	(15, 0)		
0x08 (8)	(8, 0)	(8, 0)	(8, 0)	(0, 1)	(1, 1)		
0x09 (9)	(9, 0)	(9, 0)	(9, 0)	(2, 1)	(3, 1)		
0x0A (10)	(10, 0)	(10, 0)	(10, 0)	(4, 1)	(5, 1)		
0x0B (11)	(11, 0)	(11, 0)	(11, 0)	(6, 1)	(7, 1)		
0x0C (12)	(12, 0)	(12, 0)	(12, 0)	(8, 1)	(9, 1)		
0x0D (13)	(13, 0)	(13, 0)	(13, 0)	(10, 1)	(11, 1)		
0x0E (14) 0x0F (15)	(14, 0) (15, 0)	(14, 0) (15, 0)	(14, 0) (15, 0)	(12, 1)	(13, 1) (15, 1)		
0x10 (16)	(16, 0)	(16, 0)	(16, 0)	(0, 2)	(15, 1) $(1, 2)$		
0x10 (10) 0x11 (17)	(17, 0)	(17, 0)	(17, 0)	(2, 2)	(3, 2)		
0x11 (17) 0x12 (18)	(18, 0)	(18, 0)	(18, 0)	(4, 2)	(5, 2)		
0x13 (19)	(19, 0)	(19, 0)	(19, 0)	(6, 2)	(7, 2)		
0x14 (20)	(20, 0)	(20, 0)	(20, 0)	(8, 2)	(9, 2)		
0x15 (21)	(21, 0)	(21, 0)	(21, 0)	(10, 2)	(11, 2)		
0x16 (22)	(22, 0)	(22, 0)	(22, 0)	(12, 2)	(13, 2)		
0x17 (23)	(23, 0)	(23, 0)	(23, 0)	(14, 2)	(15, 2)		
0x18 (24)	_	(0, 1)	(0, 1)	(0, 3)	(1, 3)		
0x19 (25)	_	(1, 1)	(1, 1)	(2, 3)	(3, 3)		
0x1A (26)	-	(2, 1)	(2, 1)	(4, 3)	(5, 3)		
0x1B (27)	_	(3, 1)	(3, 1)	(6, 3)	(7, 3)		
0x1C (28)	_	(4, 1)	(4, 1)	(8, 3)	(9, 3)		
0x1D (29)	_	(5, 1)	(5, 1)	(10, 3)	(11, 3)		
0x1E (30)	_	(6, 1)	(6, 1)	(12, 3)	(13, 3)		
0x1F (31)	_	(7, 1)	(7, 1)	(14, 3)	(15, 3)		
0x20 (32)		(8, 1)	(8, 1)	(0, 4)	(1, 4)		
0x21 (33)	_	(9, 1)	(9, 1)	(2, 4)	(3, 4)		
0x22 (34)		(10, 1)	(10, 1)	(4, 4)	(5, 4)		
0x23 (35) 0x24 (36)	_	(11, 1)	(11, 1) (12, 1)	(6, 4)	(7, 4) (9, 4)		
0x24 (30) 0x25 (37)		(13, 1)	(13, 1)	(10, 4)	(11, 4)		
0x26 (38)		(14, 1)	(14, 1)	(12, 4)	(13, 4)		
0x27 (39)		(15, 1)	(15, 1)	(14, 4)	(15, 4)		
0x28 (40)	_	(16, 1)	(16, 1)	(0, 5)	(1, 5)		
0x29 (41)	_	(17, 1)	(17, 1)	(2, 5)	(3, 5)		
0x2A (42)	_	(18, 1)	(18, 1)	(4, 5)	(5, 5)		
0x2B (43)	_	(19, 1)	(19, 1)	(6, 5)	(7, 5)		
0x2C (44)	_	(20, 1)	(20, 1)	(8, 5)	(9, 5)		
0x2D (45)	_	(21, 1)	(21, 1)	(10, 5)	(11, 5)		
0x2E (46)	_	(22, 1)	(22, 1)	(12, 5)	(13, 5)		
0x2F (47)	_	(23, 1)	(23, 1)	(14, 5)	(15, 5)		

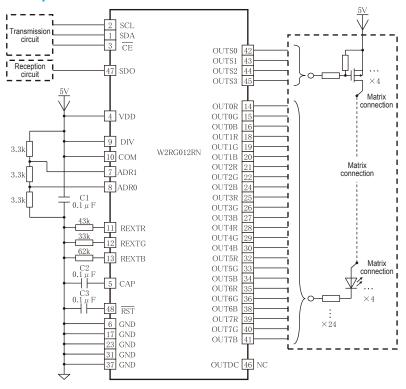

Destates	Matrix configuration						
Resistor	94 ∨ 1	24×2	24×4	16×8			
address	24×1	24 × 2	24 × 4	Even columns	Odd columns		
0x30 (48)	_	_	(0, 2)	(0, 6)	(1, 6)		
0x31 (49)	_	_	(1, 2)	(2, 6)	(3, 6)		
0x32 (50)	1	-	(2, 2)	(4, 6)	(5, 6)		
0x33 (51)	_	_	(3, 2)	(6, 6)	(7, 6)		
0x34 (52)	-	-	(4, 2)	(8, 6)	(9, 6)		
0x35 (53)	-	1	(5, 2)	(10, 6)	(11, 6)		
0x36 (54)	_		(6, 2)	(12, 6)	(13, 6)		
0x37 (55)	_	_	(7, 2)	(14, 6)	(15, 6)		
0x38 (56)	_	_	(8, 2)	(0, 7)	(1, 7)		
0x39 (57)	_	_	(9, 2)	(2, 7)	(3, 7)		
0x3A (58)	_	_	(10, 2)	(4, 7)	(5, 7)		
0x3B (59)	_		(11, 2)	(6, 7)	(7, 7)		
0x3C (60)	_		(12, 2)	(8, 7)	(9, 7)		
0x3D (61)	_	_	(13, 2)	(10, 7)	(11, 7)		
0x3E (62)	_	_	(14, 2)	(12, 7)	(13, 7)		
0x3F (63)	_	_	(15, 2)	(14, 7)	(15, 7)		
0x40 (64)			(16, 2)	_	_		
0x41 (65)	_	_	(17, 2)	_	_		
0x42 (66)	_	_	(18, 2)	_	_		
0x43 (67)		_	(19, 2)	_	_		
0x44 (68)	-	1	(20, 2)	-	_		
0x45 (69)	_	_	(21, 2)	_	_		
0x46 (70)	_	_	(22, 2)	-	_		
0x47 (71)	_	_	(23, 2)	_	_		
0x48 (72)	_	_	(0, 3)	_	_		
0x49 (73)			(1, 3)	_			
0x4A (74)	_	_	(2, 3)	_	_		
0x4B (75)	_	_	(3, 3)	_	_		
0x4C (76)		_	(4, 3)	_			
0x4D (77)			(5, 3)				
0x4E (78)	_		(6, 3)	_	_		
0x4F (79)			(7, 3)		_		
0x50 (80)		_	(8, 3)				
0x51 (81)	_	_	(9, 3)	_	_		
0x52 (82)	_		(10, 3)	_			
0x53 (83)	_		(11, 3)	_			
0x54 (84)			(12, 3)	_			
0x55 (85)		_	(13, 3)	_			
0x56 (86)			(14, 3)	_			
0x57 (87)	_	_	(15, 3)	_	_		
0x58 (88)			(16, 3)	_			
0x59 (89)		-	(17, 3)	_			
0x5A (90)			(18, 3)	_			
0x5B (91)			(19, 3)	_	_		
0x5C (92)			(20, 3)	_	_		
0x5D (93)			(21, 3)	_			
0x5E (94)			(22, 3)	_	_		
0x5F (95)	_	_	(23, 3)	_	_		

Table 7: Lighting gradation and output duty cycle

Lighting gradation (8 bit) *Represen-	Lighting gradation (7 bit) *Represen-	Lighting gradation (4 bit)		Matrix cor	nfiguration	
tative value	tative value	` ′	24×1	24×2	24×4	16×8
0	0	0	(Light off)	(Light off)	(Light off)	(Light off)
15	7	ı	0.37 %	0.18 %	0.09 %	0.05 %
31	15	1	0.76 %	0.38 %	0.19 %	0.09 %
47	23	2	1.15 %	0.57 %	0.29 %	0.14 %
63	31	3	1.54 %	0.77 %	0.38 %	0.19 %
79	39	4	2.29 %	1.15 %	0.57 %	0.29 %
95	47	5	3.08 %	1.54 %	0.77 %	0.38 %
111	55	6	4.59 %	2.29 %	1.15 %	0.57 %
127	63	7	6.15 %	3.08 %	1.54 %	0.77 %
143	71	8	9.18 %	4.59 %	2.29 %	1.15 %
159	79	9	12.30 %	6.15 %	3.08 %	1.54 %
175	87	10	18.36 %	9.18 %	4.59 %	2.29 %
191	95	11	24.61 %	12.30 %	6.15 %	3.08 %
207	103	12	36.72 %	18.36 %	9.18 %	4.59 %
223	111	13	49.22 %	24.61 %	12.30 %	6.15 %
239	119	14	73.44 %	36.72 %	18.36 %	9.18 %
255	127	15	98.44 %	49.22 %	24.61 %	12.30 %

Application Circuit Example

[Setting example]

DIV: 24 x 4 configuration, COM: I2C communication, ADR: device address "1101", constant current setting R: 59.5 mA (14.9 mA), G: 77.6 mA (19.4 mA), B: 41.3 mA (10.3 mA)

(Values in parentheses are effective values)

Precautions for Use

- (1) Check the operation at your communication frequency before use.
- (2) Each input circuit should be determined with due consideration of the voltage, chattering, and static electricity of the input to be connected.
- (3) An electrostatic discharge (ESD) protection circuit is built in, but If static electricity exceeding its function is applied, it may be destroyed. When handling, take sufficient precautions such as grounding your body.
- (4) Consider allowable losses under actual operating conditions and perform thermal design with sufficient margins. When the voltage loaded onto the IC is high, such as when the number of LEDs driven in series is small, heat generation in the IC can be reduced by inserting a resistor to distribute power consumption.
- (5) This IC has a built-in thermal shutdown circuit. When the chip temperature becomes abnormally high, this circuit operates, the output terminal becomes open, and the chip temperature returns to the normal range. Do not use this circuit as a regular function, as it is an emergency protection function.

Please check each region's Terms & Conditions by region website.

OMRON AMUSEMENT Co., Ltd

Regional Contact

Americas Europe

https://components.omron.com/us-en/ https://components.omron.com/eu-en/

Asia-Pacific China

https://components.omron.com/sg-en/ https://components.omron.com.cn/

Korea Japa

https://components.omron.com/kr-en/ https://components.omron.com/jp-ja/